Drug Courts

Program description:

While each drug court is unique, they all share the primary goals of reducing criminal recidivism and substance abuse among participants. Drug courts use comprehensive supervision, drug testing, treatment services, and immediate sanctions and incentives in an attempt to modify the criminal behavior of certain drug-involved defendants.

Typical age of primary program participant: 28
Typical age of secondary program participant: N/A

Meta-Analysis of Program Effects

<table>
<thead>
<tr>
<th>Outcomes Measured</th>
<th>Primary or Secondary Participant</th>
<th>No. of Effect Sizes (Random Effects Model)</th>
<th>Adjusted Effect Sizes and Standard Errors Used in the Benefit-Cost Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Unadjusted Effect Sizes</td>
<td>First time ES is estimated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES</td>
<td>SE</td>
</tr>
<tr>
<td>Crime</td>
<td>P</td>
<td>67</td>
<td>-0.25</td>
</tr>
</tbody>
</table>

Benefit-Cost Summary

The estimates shown are present value, life cycle benefits and costs. All dollars are expressed in the base year chosen for this analysis (2011). The economic discount rates and other relevant parameters are described in Technical Appendix 2.

<table>
<thead>
<tr>
<th>Participants</th>
<th>Taxpayers</th>
<th>Other</th>
<th>Other Indirect</th>
<th>Total Benefits</th>
<th>Benefit to Cost Ratio</th>
<th>Return on Investment</th>
<th>Benefits Minus Costs</th>
<th>Probability of a positive net present value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0</td>
<td>$3,376</td>
<td>$10,373</td>
<td>$1,684</td>
<td>$15,433</td>
<td>$3.69</td>
<td>26%</td>
<td>$11,255</td>
<td>100%</td>
</tr>
</tbody>
</table>

Detailed Monetary Benefit Estimates

<table>
<thead>
<tr>
<th>Source of Benefits</th>
<th>Benefits to:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Participants</td>
</tr>
<tr>
<td>Crime</td>
<td>$0</td>
</tr>
</tbody>
</table>

Detailed Cost Estimates

The figures shown are estimates of the costs to implement programs in Washington. The comparison group costs reflect either no treatment or treatment as usual, depending on how effect sizes were calculated in the meta-analysis. The uncertainty range is used in Monte Carlo risk analysis, described in Technical Appendix 2.

<table>
<thead>
<tr>
<th>Program Costs</th>
<th>Comparison Costs</th>
<th>Summary Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Cost</td>
<td>Program Duration</td>
<td>Year Dollars</td>
</tr>
<tr>
<td>$11,227</td>
<td>1</td>
<td>2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Multiplicative Adjustments Applied to the Meta-Analysis

<table>
<thead>
<tr>
<th>Type of Adjustment</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- Less well-implemented comparison group or observational study, with some covariates.</td>
<td>1.00</td>
</tr>
<tr>
<td>2- Well-implemented comparison group design, often with many statistical controls.</td>
<td>1.00</td>
</tr>
<tr>
<td>3- Well-done observational study with many statistical controls (e.g., instrumental variables).</td>
<td>1.00</td>
</tr>
<tr>
<td>4- Random assignment, with some implementation issues.</td>
<td>1.00</td>
</tr>
<tr>
<td>5- Well-done random assignment study.</td>
<td>1.00</td>
</tr>
<tr>
<td>Program developer = researcher</td>
<td>0.36</td>
</tr>
<tr>
<td>Unusual (not "real-world") setting</td>
<td>0.50</td>
</tr>
<tr>
<td>Weak measurement used</td>
<td>0.80</td>
</tr>
</tbody>
</table>

The adjustment factors for these studies are based on our empirical knowledge of the research in a topic area. We performed a multivariate regression analysis of 96 effect sizes from evaluations of adult and juvenile justice programs. The analysis examined the relative magnitude of effect sizes for studies rated a 1, 2, 3, or 4 for research design quality, in comparison with a 5 (see Technical Appendix B for a description of these ratings). We weighted the model using the random effects inverse variance weights for each effect size. The results indicated that research designs 1, 2, and 3 should have an adjustment factor greater than 1 and research design 4 should have an adjustment factor of approximately 1. Using a conservative approach, we set all the multipliers to 1.

In this analysis, we also found that effect sizes were statistically significantly higher when the program developer was involved in the research evaluation. Similar findings, although not statistically significant, indicated that studies using weak outcome measures (such as technical violations) were higher.

Studies Used in the Meta-Analysis

Studies Used in the Meta-Analysis

Studies Used in the Meta-Analysis

