Contingency management (lower cost) for substance use disorders
Substance Use Disorders: Treatment for Adults

The WSIPP benefit-cost analysis examines, on an apples-to-apples basis, the monetary value of programs or policies to determine whether the benefits from the program exceed its costs. WSIPP’s research approach to identifying evidence-based programs and policies has three main steps. First, we determine “what works” (and what does not work) to improve outcomes using a statistical technique called meta-analysis. Second, we calculate whether the benefits of a program exceed its costs. Third, we estimate the risk of investing in a program by testing the sensitivity of our results. For more detail on our methods, see our Technical Documentation.

Program Description: Contingency management is a supplement to counseling treatment that rewards participants for attending treatment and/or abstaining from substance use. The intervention reviewed here focused on those with drug and/or alcohol use disorder (excluding those with a primary diagnosis of marijuana use disorder) where contingencies were provided for remaining abstinent. Two methods of contingency management were reviewed: (1) A voucher system where abstinence earned vouchers that were exchangeable for goods provided by the clinic or counseling center, and (2) a prize or raffle system where clients who remained abstinent could earn the opportunity to draw from a prize bowl. Higher-cost contingency management was determined by maximum voucher or maximum expected value of prizes possible. Based on a statistical analysis of contingency management studies, we determined that programs with a maximum value of vouchers or prizes less than or equal to $500 (in 2012 dollars) represent lower-cost contingency management. Treatment in the included studies lasted between 1 and 12 months with a weighted average of 3.5 months of contingency management and reward opportunities occurring two to three times per week, on average.

<table>
<thead>
<tr>
<th>Benefit-Cost Summary Statistics Per Participant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefits to:</td>
</tr>
<tr>
<td>Taxpayers</td>
</tr>
<tr>
<td>Participants</td>
</tr>
<tr>
<td>Others</td>
</tr>
<tr>
<td>Indirect</td>
</tr>
<tr>
<td>Total benefits</td>
</tr>
<tr>
<td>Net program cost</td>
</tr>
<tr>
<td>Benefits minus cost</td>
</tr>
<tr>
<td>Benefit to cost ratio</td>
</tr>
<tr>
<td>Benefits minus costs</td>
</tr>
<tr>
<td>Chance the program will produce benefits</td>
</tr>
<tr>
<td>greater than the costs</td>
</tr>
</tbody>
</table>

The estimates shown are present value, life cycle benefits and costs. All dollars are expressed in the base year chosen for this analysis (2018). The chance the benefits exceed the costs are derived from a Monte Carlo risk analysis. The details on this, as well as the economic discount rates and other relevant parameters are described in our Technical Documentation.
Meta-Analysis of Program Effects

<table>
<thead>
<tr>
<th>Outcomes measured</th>
<th>Treatment age</th>
<th>No. of effect sizes</th>
<th>Treatment N</th>
<th>Adjusted effect sizes and standard errors used in the benefit-cost analysis</th>
<th>Unadjusted effect size (random effects model)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>First time ES is estimated</td>
<td>Second time ES is estimated</td>
</tr>
<tr>
<td>Alcohol use disorder</td>
<td>37</td>
<td>7</td>
<td>800</td>
<td>-0.196</td>
<td>0.116</td>
</tr>
<tr>
<td>Illicit drug use disorder</td>
<td>37</td>
<td>29</td>
<td>1595</td>
<td>-0.278</td>
<td>0.049</td>
</tr>
<tr>
<td>Cannabis use</td>
<td>37</td>
<td>3</td>
<td>319</td>
<td>-0.049</td>
<td>0.118</td>
</tr>
</tbody>
</table>

^WSIPP’s benefit-cost model does not monetize this outcome.

Meta-analysis is a statistical method to combine the results from separate studies on a program, policy, or topic in order to estimate its effect on an outcome. WSIPP systematically evaluates all credible evaluations we can locate on each topic. The outcomes measured are the types of program impacts that were measured in the research literature (for example, crime or educational attainment). Treatment N represents the total number of individuals or units in the treatment group across the included studies.

An effect size (ES) is a standard metric that summarizes the degree to which a program or policy affects a measured outcome. If the effect size is positive, the outcome increases. If the effect size is negative, the outcome decreases.

Adjusted effect sizes are used to calculate the benefits from our benefit cost model. WSIPP may adjust effect sizes based on methodological characteristics of the study. For example, we may adjust effect sizes when a study has a weak research design or when the program developer is involved in the research. The magnitude of these adjustments varies depending on the topic area.

WSIPP may also adjust the second ES measurement. Research shows the magnitude of some effect sizes decrease over time. For those effect sizes, we estimate outcome-based adjustments which we apply between the first time ES is estimated and the second time ES is estimated. We also report the unadjusted effect size to show the effect sizes before any adjustments have been made. More details about these adjustments can be found in our Technical Documentation.

Detailed Monetary Benefit Estimates Per Participant

<table>
<thead>
<tr>
<th>Affected outcome:</th>
<th>Resulting benefits:¹</th>
<th>Benefits accrue to:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Taxpayers</td>
<td>Participants</td>
</tr>
<tr>
<td>Illicit drug use disorder</td>
<td>Criminal justice system</td>
<td>$0</td>
</tr>
<tr>
<td>Alcohol use disorder</td>
<td>Property loss associated with alcohol abuse or dependence</td>
<td>$0</td>
</tr>
<tr>
<td>Illicit drug use disorder</td>
<td>Labor market earnings associated with illicit drug abuse or dependence</td>
<td>$190</td>
</tr>
<tr>
<td>Illicit drug use disorder</td>
<td>Health care associated with illicit drug abuse or dependence</td>
<td>$234</td>
</tr>
<tr>
<td>Illicit drug use disorder</td>
<td>Mortality associated with illicit drugs</td>
<td>$72</td>
</tr>
<tr>
<td>Program cost</td>
<td>Adjustment for deadweight cost of program</td>
<td>$0</td>
</tr>
</tbody>
</table>

Totals | $496 | $653 | $241 | $1,555 | $2,945 |

¹In addition to the outcomes measured in the meta-analysis table, WSIPP measures benefits and costs estimated from other outcomes associated with those reported in the evaluation literature. For example, empirical research demonstrates that high school graduation leads to reduced crime. These associated measures provide a more complete picture of the detailed costs and benefits of the program.

²“Others” includes benefits to people other than taxpayers and participants. Depending on the program, it could include reductions in crime victimization, the economic benefits from a more educated workforce, and the benefits from employer-paid health insurance.

³“Indirect benefits” includes estimates of the net changes in the value of a statistical life and net changes in the deadweight costs of taxation.
Contingency management is typically provided for a year or less. We calculated the weighted average of the per-participant treatment and comparison group variable costs across studies estimating the cost-effectiveness of an incentive program with an average cost of less than $500 in 2012 (Sindelar, Olmstead, & Peirce, 2007; Sindelar, Elbel, & Petry, 2006; Hartz et al., 1999). Costs of administering the incentive program include staff costs to inventory, shop for, and restock prizes; material cost of items; counseling session costs; and toxicology screens. All staff costs include salary, benefits, and overhead. All costs are calculated from the clinic perspective. Note that because treatment group participants have higher retention rates than the control group, costs also reflect the increased number of counseling sessions attended and urinalysis tests performed for the treated group.

The figures shown are estimates of the costs to implement programs in Washington. The comparison group costs reflect either no treatment or treatment as usual, depending on how effect sizes were calculated in the meta-analysis. The cost range reported above reflects potential variation or uncertainty in the cost estimate; more detail can be found in our Technical Documentation.
The graph above illustrates the breakdown of the estimated cumulative benefits (not including program costs) per-participant for the first fifty years beyond the initial investment in the program. These cash flows provide a breakdown of the classification of dollars over time into four perspectives: taxpayer, participant, others, and indirect. “Taxpayers” includes expected savings to government and expected increases in tax revenue. “Participants” includes expected increases in earnings and expenditures for items such as health care and college tuition. “Others” includes benefits to people other than taxpayers and participants. Depending on the program, it could include reductions in crime victimization, the economic benefits from a more educated workforce, and the benefits from employer-paid health insurance. “Indirect benefits” includes estimates of the changes in the value of a statistical life and changes in the deadweight costs of taxation. If a section of the bar is below the $0 line, the program is creating a negative benefit, meaning a loss of value from that perspective.

The graph above focuses on the subset of estimated cumulative benefits that accrue to taxpayers. The cash flows are divided into the source of the value.
Citations Used in the Meta-Analysis

