skip to main content
Washington State Institute for Public Policy
Back Button

Multisystemic Therapy (MST) for juveniles with substance use disorder

Juvenile Justice
Benefit-cost methods last updated December 2018.  Literature review updated August 2017.
Open PDF
Multisystemic Therapy—Substance Abuse (MST-SA) is a form of MST that is targeted toward youth who engage in disordered use of drugs and/or alcohol. MST-SA is intended to reduce drug use and abuse, as well as related delinquent or criminal behavior. MST-SA is delivered by therapists in the participants’ home, school, and community. MST-SA includes a specific written plan, intensive family-focused therapy, job training, and inclusion in positive activities (e.g., sports or clubs). This program also includes random drug testing and rewards for positive behavior (e.g., rewarding a clean urinalysis with monetary compensation). The average MST-SA treatment lasts four months, with several therapist-family visits occurring per week. Participants are typically referred to MST-SA from juvenile drug court or as a condition to probation.

This meta-analysis includes adolescents who were identified as substance-abusing or dependent. We present analyses for other types of MST separately from this analysis.
The estimates shown are present value, life cycle benefits and costs. All dollars are expressed in the base year chosen for this analysis (2017). The chance the benefits exceed the costs are derived from a Monte Carlo risk analysis. The details on this, as well as the economic discount rates and other relevant parameters are described in our Technical Documentation.
Benefit-Cost Summary Statistics Per Participant
Benefits to:
Taxpayers $3,657 Benefits minus costs $3,887
Participants $616 Benefit to cost ratio $1.49
Others $7,808 Chance the program will produce
Indirect ($230) benefits greater than the costs 52 %
Total benefits $11,851
Net program cost ($7,964)
Benefits minus cost $3,887
1In addition to the outcomes measured in the meta-analysis table, WSIPP measures benefits and costs estimated from other outcomes associated with those reported in the evaluation literature. For example, empirical research demonstrates that high school graduation leads to reduced crime. These associated measures provide a more complete picture of the detailed costs and benefits of the program.

2“Others” includes benefits to people other than taxpayers and participants. Depending on the program, it could include reductions in crime victimization, the economic benefits from a more educated workforce, and the benefits from employer-paid health insurance.

3“Indirect benefits” includes estimates of the net changes in the value of a statistical life and net changes in the deadweight costs of taxation.
Detailed Monetary Benefit Estimates Per Participant
Benefits from changes to:1 Benefits to:
Taxpayers Participants Others2 Indirect3 Total
Crime $2,663 $0 $6,992 $1,324 $10,979
Labor market earnings associated with illicit drug abuse or dependence $90 $198 $0 $0 $287
Health care associated with illicit drug abuse or dependence $777 $137 $816 $393 $2,122
Mortality associated with illicit drugs $128 $281 $0 $2,046 $2,455
Adjustment for deadweight cost of program $0 $0 $0 ($3,993) ($3,993)
Totals $3,657 $616 $7,808 ($230) $11,851
Detailed Annual Cost Estimates Per Participant
Annual cost Year dollars Summary
Program costs $7,076 2008 Present value of net program costs (in 2017 dollars) ($7,964)
Comparison costs $0 2008 Cost range (+ or -) 10 %
The per-participant cost estimate is based on providing traditional MST for four months, as described in Barnoski, R. (2009). Providing evidence-based programs with fidelity in Washington State juvenile courts: Cost analysis (Doc. No. 09-12-1201). Olympia: Washington State Institute for Public Policy.
The figures shown are estimates of the costs to implement programs in Washington. The comparison group costs reflect either no treatment or treatment as usual, depending on how effect sizes were calculated in the meta-analysis. The cost range reported above reflects potential variation or uncertainty in the cost estimate; more detail can be found in our Technical Documentation.
Estimated Cumulative Net Benefits Over Time (Non-Discounted Dollars)
The graph above illustrates the estimated cumulative net benefits per-participant for the first fifty years beyond the initial investment in the program. We present these cash flows in non-discounted dollars to simplify the “break-even” point from a budgeting perspective. If the dollars are negative (bars below $0 line), the cumulative benefits do not outweigh the cost of the program up to that point in time. The program breaks even when the dollars reach $0. At this point, the total benefits to participants, taxpayers, and others, are equal to the cost of the program. If the dollars are above $0, the benefits of the program exceed the initial investment.

^WSIPP’s benefit-cost model does not monetize this outcome.

^^WSIPP does not include this outcome when conducting benefit-cost analysis for this program.

Meta-analysis is a statistical method to combine the results from separate studies on a program, policy, or topic in order to estimate its effect on an outcome. WSIPP systematically evaluates all credible evaluations we can locate on each topic. The outcomes measured are the types of program impacts that were measured in the research literature (for example, crime or educational attainment). Treatment N represents the total number of individuals or units in the treatment group across the included studies.

An effect size (ES) is a standard metric that summarizes the degree to which a program or policy affects a measured outcome. If the effect size is positive, the outcome increases. If the effect size is negative, the outcome decreases.

Adjusted effect sizes are used to calculate the benefits from our benefit cost model. WSIPP may adjust effect sizes based on methodological characteristics of the study. For example, we may adjust effect sizes when a study has a weak research design or when the program developer is involved in the research. The magnitude of these adjustments varies depending on the topic area.

WSIPP may also adjust the second ES measurement. Research shows the magnitude of some effect sizes decrease over time. For those effect sizes, we estimate outcome-based adjustments which we apply between the first time ES is estimated and the second time ES is estimated. We also report the unadjusted effect size to show the effect sizes before any adjustments have been made. More details about these adjustments can be found in our Technical Documentation.

Meta-Analysis of Program Effects
Outcomes measured Treatment age No. of effect sizes Treatment N Adjusted effect sizes(ES) and standard errors(SE) used in the benefit - cost analysis Unadjusted effect size (random effects model)
First time ES is estimated Second time ES is estimated
ES SE Age ES SE Age ES p-value
Cannabis use^ 17 2 80 -0.137 0.194 20 n/a n/a n/a -0.413 0.097
Crime 17 2 86 -0.103 0.158 20 -0.103 0.158 30 -0.278 0.083
Externalizing behavior symptoms^^ 17 1 43 -0.060 0.224 20 n/a n/a n/a -0.163 0.469
Illicit drug use disorder 17 1 43 -0.117 0.280 20 0.000 0.187 23 -0.315 0.251
Internalizing symptoms^^ 17 1 43 -0.042 0.224 20 n/a n/a n/a -0.115 0.609

Citations Used in the Meta-Analysis

Henggeler, S.W., Clingempeel, W.G., Brondino, M.J., & Pickrel, S.G. (2002). Four-year follow-up of multisystemic therapy with substance-abusing and substance-dependent juvenile offenders. Journal of the American Academy of Child and Adolescent Psychiatry, 41(7), 868-874.

Henggeler, S.W., Halliday-Boykins, C.A., Cunningham, P.B., Randall, J., Shapiro, S.B, & Chapman, J.E. (2006). Juvenile drug court: Enhancing outcomes by integrating evidence-based treatments. Journal of Consulting and Clinical Psychology, 74(1), 42-54.